The next generation of our open source large language model
This release includes model weights and starting code for pretrained and fine-tuned Llama language models â ranging from 7B to 70B parameters.
Llama 2 was trained on 40% more data than Llama 1, and has double the context length.
Training Llama-2-chat: Llama 2 is pretrained using publicly available online data. An initial version of Llama-2-chat is then created through the use of supervised fine-tuning. Next, Llama-2-chat is iteratively refined using Reinforcement Learning from Human Feedback (RLHF), which includes rejection sampling and proximal policy optimization (PPO).
Tech Used:
Llama 2
Top Features:
- Llama 2 models are trained on 2 trillion tokens and have double the context length of Llama 1. Llama-2-chat models have additionally been trained on over 1 million new human annotations.
- Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests.
- Llama-2-chat uses reinforcement learning from human feedback to ensure safety and helpfulness.